1. Product and Company Identification

Material Name: WROUGHT ALUMINUM PRODUCTS, 2xxx SERIES ALLOYS
MSDS Number: 664
Chemical Formula: Mixture
Product use: Various fabricated aluminum parts and products

Manufacturer Information
Alcoa Inc
201 Isabella Street
Pittsburgh, PA 15212-5858 US
Phone: Health and Safety: 1-412-553-4649

Emergency Information
USA: Chemtrec: +1-703-527-3887 +1-800-424-9300 ALCOA: +1-412-553-4001
Website
For a current Material Safety Data Sheet, refer to Alcoa websites: www.alcoa.com or Internally at my.alcoa.com EHS Community

2. Hazards Identification

Emergency Overview
Solid. Silver colored. Odorless. Non-combustible as supplied. Small chips, fine turnings and dust from processing may be readily ignitable.

Explosion/fire hazards may be present when (See Sections 5, 7 and 10 for additional information):
- Dust or fines are dispersed in air.
- Chips, dust or fines are in contact with water.
- Dust and fines are in contact with certain metal oxides (e.g., rust, copper oxide).
- Molten metal in contact with water/moisture or certain metal oxides (e.g., rust, copper oxide).

Dust and fumes from processing: Can cause irritation of the eyes, skin and respiratory tract.

Potential Health Effects
The health effects listed below are not likely to occur unless processing of this product generates dusts.
The following statements summarize the health effects generally expected in cases of overexposures. User specific situations should be assessed by a qualified individual. Additional health information can be found in Section 11.

Eyes
Dust and fumes from processing: Can cause irritation.

Skin
Contact with residual oil/oil coating: Can cause irritation. Prolonged or repeated skin contact may cause dermatitis.
Dust and fumes from processing: Can cause irritation. Prolonged or repeated skin contact may cause sensitization and allergic contact dermatitis.

Inhalation
Health effects from mechanical processing (e.g., cutting, grinding):
Dust: Can cause irritation of the upper respiratory tract. Chronic overexposures: Can cause skin abnormalities (pigmentation changes), reduction in the number of red blood cells (anemia), respiratory sensitization, central nervous system damage, secondary Parkinson's disease and reproductive harm in males.

Additional health effects from elevated temperature processing (e.g., welding, melting):
Dust and fumes: Can cause irritation of the respiratory tract. Acute overexposures: Can cause metal fume fever (nausea, chills, fever, shortness of breath and malaise), reduced ability of the blood to carry oxygen (methemoglobin) and the accumulation of fluid in the lungs (pulmonary edema). Chronic overexposures: Can cause benign lung disease (siderosis) and lung cancer.
Carcinogenicity and Reproductive Hazard

Product as shipped: Does not present any cancer or reproductive hazards. Dust from mechanical processing: Can present a cancer hazard (Cadmium, Nickel). Can present a reproductive hazard for males (Manganese). Dust and fumes from welding or elevated temperature processing: Can present a cancer hazard (Hexavalent chromium compounds, Nickel compounds). Can present a reproductive hazard (Manganese compounds).

Medical conditions aggravated by exposure to product

Dust and fumes from processing: Asthma, chronic lung disease, Secondary Parkinson's disease and skin rashes.

3. Composition / Information on Ingredients

Composition comments Complete composition is provided below and may include some components classified as non-hazardous.

<table>
<thead>
<tr>
<th>Components</th>
<th>CAS #</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>85 - 97</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td><6.9</td>
</tr>
<tr>
<td>Nickel†</td>
<td>7440-02-0</td>
<td><2.4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439-95-4</td>
<td><2</td>
</tr>
<tr>
<td>Iron</td>
<td>7439-89-6</td>
<td><1.5</td>
</tr>
<tr>
<td>Silicon</td>
<td>7440-21-3</td>
<td><1.4</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td><1.3</td>
</tr>
<tr>
<td>Silver</td>
<td>7440-22-4</td>
<td><0.8</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440-47-3</td>
<td><0.4</td>
</tr>
<tr>
<td>Cadmium‡</td>
<td>7440-43-9</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Additional Information

† - Alloys: 2018, 2031, 2032, 2218, 2618, 2618A, C42J and C50Z.

Additional compounds which may be formed during processing are listed in Section 8.

4. First Aid Measures

First aid procedures

Eye contact Dust and fumes from processing: Rinse eyes with plenty of water or saline for at least 15 minutes. Consult a physician.

Skin contact Dust and fumes from processing: Wash with soap and water for at least 15 minutes. Get medical attention if irritation develops or persists.

Inhalation Dust and fumes from processing: Remove to fresh air. Check for clear airway, breathing, and presence of pulse. Provide cardiopulmonary resuscitation for persons without pulse or respirations. Consult a physician.

5. Fire Fighting Measures

Flammable/Combustible Properties

This product does not present fire or explosion hazards as shipped. Small chips, fine turnings, and dust from processing may be readily ignitable.

Fire / Explosion Hazards

May be a potential hazard under the following conditions:
- Dust clouds may be explosive. Even a minor dust cloud can explode violently. Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
- Chips, fines and dust in contact with water can generate flammable/explosive hydrogen gas. These gases could present an explosion hazard in confined or poorly ventilated spaces.
- Dust and fines in contact with certain metal oxides (e.g., rust, copper oxide). A thermite reaction, with considerable heat generation, can be initiated by a weak ignition source.
- Molten metal in contact with water/moisture or certain metal oxides (e.g., rust, copper oxide). Moisture entrapped by molten metal can be explosive. Contact of molten aluminum with certain metal oxides can initiate a thermite reaction. Finely divided metals (e.g., powders or wire) may have enough surface oxide to produce thermite reactions/explosions.
Extinguishing media

Suitable extinguishing media

Use Class D extinguishing agents on fines, dust or molten metal. Use coarse water spray on chips and turnings.

Unsuitable extinguishing media

DO NOT USE halogenated extinguishing agents on small chips/fines.

DO NOT USE water in fighting fires around molten metal.

These fire extinguishing agents will react with the burning material.

Protection of firefighters

Protective equipment for firefighters

Fire fighters should wear NIOSH approved, positive pressure, self-contained breathing apparatus and full protective clothing when appropriate.

6. Accidental Release Measures

Spill or leak procedure

Collect scrap for recycling.

If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remelting as scrap.

7. Handling and Storage

Handling

Keep material dry. Avoid generating dust. Avoid contact with sharp edges or heated metal. Hot and cold aluminum are not visually different. Hot aluminum does not necessarily glow red.

Requirements for Processes Which Generate Dusts or Fines

If processing of this product generates dust or if extremely fine particulate is generated, obtain and follow the safety procedures and equipment guides contained in Aluminum Association Bulletin F-1 and National Fire Protection Association (NFPA) brochures listed in Section 16.

Use non-sparking handling equipment, tools and natural bristle brush. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations (See Section 15).

Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuums and electrostatic precipitators must not be used, unless specifically approved for use with flammable/explosive dusts. Dust collection systems must be dedicated to aluminum dust only and should be clearly labeled as such. Do not co-mingle fines of aluminum with fines of iron, iron oxide (rust) or other metal oxides.

Do not allow chips, fines or dust to contact water, particularly in enclosed areas.

Avoid all ignition sources. Good housekeeping practices must be maintained. Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions. Do not use compressed air to remove settled material from floors, beams or equipment.
Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off the water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops of water can lead to violent explosions.

All tooling, containers, molds and ladles which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Any surfaces that may contact molten metal (e.g., concrete) should be specially coated.

Drops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimize the hazards.

During melting operations, the following minimum guidelines should be observed:

- Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage.
- Store materials in dry, heated areas with any cracks or cavities pointed downwards.
- Preheat and dry large items adequately before charging into a furnace containing molten metal. This is typically done by use of a drying oven or homogenizing furnace. The drying cycle should bring the metal temperature of the coldest item of the batch to 400°F (200°C) and then hold at that temperature for 6 hours.

Thermite explosions have been reported when aluminum alloys were melted in furnaces used for alloying with lead, bismuth or other metals with low melting temperatures. These metals, when added as high purity ingots, can seep through cracks in furnace liners and become oxidized. During subsequent melts in the furnace, molten aluminum can contact these metal oxides resulting in a thermite explosion.

8. Exposure Controls / Personal Protection

Engineering controls
Dust and fumes from processing: Use with adequate explosion-proof ventilation designed to handle particulates to meet the limits listed in Section 8, Exposure Guidelines.

Exposure data

Components

<table>
<thead>
<tr>
<th>U.S. - OSHA - Specifically Regulated Chemicals</th>
<th>Value Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium‡ (7440-43-9)</td>
<td>2.5 µg/m3 Action Level; 5 µg/m3 TWA (Do not eat, drink or chew tobacco or gum or apply cosmetics in regulated areas. Carcinogen - dust can cause lung and kidney disease. see 29 CFR 1910.1027)</td>
</tr>
</tbody>
</table>

Compounds Formed During Processing

<table>
<thead>
<tr>
<th>U.S. - OSHA - Specifically Regulated Chemicals</th>
<th>Value Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (VI) compounds (CASNo. Not available)</td>
<td>2.5 µg/m3 Action Level (as Cr.); 5 µg/m3 TWA (as Cr, Cancer hazard - see 29 CFR 1910.1026)</td>
</tr>
</tbody>
</table>

Occupational exposure limits

<table>
<thead>
<tr>
<th>U.S. - OSHA Components</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (7429-90-5)</td>
<td>TWA</td>
<td>5 mg/m3 (respirable fraction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA (total dust)</td>
<td>15 mg/m3 (total dust)</td>
<td></td>
</tr>
<tr>
<td>Cadmium‡ (7440-43-9)</td>
<td>TWA</td>
<td>5 µg/m3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>1 mg/m3</td>
<td></td>
</tr>
<tr>
<td>Chromium (7440-47-3)</td>
<td>TWA</td>
<td>1 mg/m3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA (fume)</td>
<td>0.1 mg/m3 (fume)</td>
<td></td>
</tr>
<tr>
<td>Copper (7440-50-8)</td>
<td>Ceiling</td>
<td>5 mg/m3 (fume)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>1 mg/m3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA (total dust)</td>
<td>15 mg/m3 (total dust)</td>
<td></td>
</tr>
<tr>
<td>Manganese (7439-96-5)</td>
<td>TWA</td>
<td>5 mg/m3 (respirable fraction)</td>
<td></td>
</tr>
<tr>
<td>Nickel† (7440-02-0)</td>
<td>TWA</td>
<td>1 mg/m3</td>
<td></td>
</tr>
<tr>
<td>Silicon (7440-21-3)</td>
<td>TWA</td>
<td>5 mg/m3 (respirable fraction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA (total dust)</td>
<td>15 mg/m3 (total dust)</td>
<td></td>
</tr>
<tr>
<td>Silver (7440-22-4)</td>
<td>TWA</td>
<td>0.01 mg/m3</td>
<td></td>
</tr>
</tbody>
</table>

Compounds Formed During Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWA</td>
<td>5 mg/m3 (respirable fraction)</td>
<td></td>
</tr>
<tr>
<td>TWA (total dust)</td>
<td>15 mg/m3 (total dust)</td>
<td></td>
</tr>
</tbody>
</table>
Compounds Formed During Processing

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (II) compounds (CASNo. Not available)</td>
<td>TWA</td>
<td>0.5 mg/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td>Chromium (III) compounds (CASNo. Not available)</td>
<td>TWA</td>
<td>0.5 mg/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td>Chromium (VI) compounds (CASNo. Not available)</td>
<td>Action</td>
<td>2.5 µg/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td>Iron oxide (1309-37-1)</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>(fume)</td>
</tr>
<tr>
<td>Magnesium oxide (1309-48-4)</td>
<td>TWA</td>
<td>15 mg/m³</td>
<td>(fume, total particulate)</td>
</tr>
<tr>
<td>Manganese compounds, inorganic (CASNo. Not available)</td>
<td>Ceiling</td>
<td>5 mg/m³</td>
<td>(as Mn)</td>
</tr>
<tr>
<td>Nickel compounds, insoluble (CASNo. Not available)</td>
<td>TWA</td>
<td>1 mg/m³</td>
<td>(as Ni)</td>
</tr>
<tr>
<td>Nitric oxide (10102-43-9)</td>
<td>TWA</td>
<td>25 ppm</td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide (10102-44-0)</td>
<td>Ceiling</td>
<td>5 ppm</td>
<td></td>
</tr>
<tr>
<td>Oil mist, mineral (8012-95-1)</td>
<td>TWA</td>
<td>5 mg/m³</td>
<td></td>
</tr>
<tr>
<td>Ozone (10028-15-6)</td>
<td>TWA</td>
<td>0.1 ppm</td>
<td></td>
</tr>
<tr>
<td>Silica, amorphous fume (69012-64-2)</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Alcoa Components

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (7429-90-5)</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>(8 Hour)</td>
</tr>
<tr>
<td>Manganese (7439-96-5)</td>
<td>TWA</td>
<td>0.05 mg/m³</td>
<td>(total dust, as Mn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02 mg/m³</td>
<td>(respirable fraction, as Mn)</td>
</tr>
</tbody>
</table>

Compounds Formed During Processing

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum oxide (non-fibrous) (1344-28-1)</td>
<td>TWA</td>
<td>3 mg/m³</td>
<td>(respirable fraction)</td>
</tr>
<tr>
<td>Chromium (VI) compounds (CASNo. Not available)</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>(8 Hour)</td>
</tr>
<tr>
<td>Manganese compounds, inorganic (CASNo. Not available)</td>
<td>TWA</td>
<td>0.25 ug/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>0.05 mg/m³</td>
<td>(total dust, as Mn)</td>
</tr>
<tr>
<td>Nickel compounds, insoluble (CASNo. Not available)</td>
<td>TWA</td>
<td>0.1 mg/m³</td>
<td>(as Ni)</td>
</tr>
<tr>
<td>Oil mist, mineral (8012-95-1)</td>
<td>TWA</td>
<td>0.5 mg/m³</td>
<td>(8 Hour)</td>
</tr>
</tbody>
</table>

ACGIH Components

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (7429-90-5)</td>
<td>TWA</td>
<td>1 mg/m³</td>
<td>(respirable fraction)</td>
</tr>
<tr>
<td>Cadmium‡ (7440-43-9)</td>
<td>TWA</td>
<td>0.01 mg/m³</td>
<td>(respirable fraction)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.002 mg/m³</td>
<td>(respirable fraction)</td>
</tr>
<tr>
<td>Chromium (7440-47-3)</td>
<td>TWA</td>
<td>0.5 mg/m³</td>
<td>(dust and mist, as Cu)</td>
</tr>
<tr>
<td>Copper (7440-50-8)</td>
<td>TWA</td>
<td>1 mg/m³</td>
<td>(fume)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td></td>
</tr>
<tr>
<td>Manganese (7439-96-5)</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td></td>
</tr>
<tr>
<td>Nickel† (7440-02-0)</td>
<td>TWA</td>
<td>1.5 mg/m³</td>
<td>(inhalable fraction)</td>
</tr>
<tr>
<td>Silver (7440-22-4)</td>
<td>TWA</td>
<td>0.1 mg/m³</td>
<td>(dust and fume)</td>
</tr>
</tbody>
</table>

Compounds Formed During Processing

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum oxide (non-fibrous) (1344-28-1)</td>
<td>TWA</td>
<td>1 mg/m³</td>
<td>(respirable fraction, as Al)</td>
</tr>
<tr>
<td>Chromium (III) compounds (CASNo. Not available)</td>
<td>TWA</td>
<td>0.5 mg/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td>Chromium (VI) compounds, certain water insoluble forms (CASNo. Not available)</td>
<td>TWA</td>
<td>0.01 mg/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td>Chromium (VI) compounds, water soluble forms (CASNo. Not available)</td>
<td>TWA</td>
<td>0.05 mg/m³</td>
<td>(as Cr)</td>
</tr>
<tr>
<td>Iron oxide (1309-37-1)</td>
<td>TWA</td>
<td>5 mg/m³</td>
<td>(respirable fraction)</td>
</tr>
<tr>
<td>Magnesium oxide (1309-48-4)</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>(inhalable fraction)</td>
</tr>
<tr>
<td>Manganese compounds, inorganic (CASNo. Not available)</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td>(as Mn)</td>
</tr>
<tr>
<td>Nickel compounds, insoluble (CASNo. Not available)</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td>(inhalable fraction, as Ni)</td>
</tr>
</tbody>
</table>
Compounds Formed During Processing

<table>
<thead>
<tr>
<th>Compounds Formed During Processing</th>
<th>Type</th>
<th>Value</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric oxide (10102-43-9)</td>
<td>TWA</td>
<td>25 ppm</td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide (10102-44-0)</td>
<td>STEL</td>
<td>5 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>3 ppm</td>
<td>(sampled by method that does not collect vapor)</td>
</tr>
<tr>
<td>Oil mist, mineral (8012-95-1)</td>
<td>STEL</td>
<td>10 mg/m³</td>
<td>(sampled by method that does not collect vapor)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>5 mg/m³</td>
<td></td>
</tr>
<tr>
<td>Ozone (10028-15-6)</td>
<td>TWA</td>
<td>0.08 ppm</td>
<td>(moderate work)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 ppm</td>
<td>(light work)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 ppm</td>
<td>(any workload, ≤ 2 hours)</td>
</tr>
<tr>
<td></td>
<td>TWA (heavy work)</td>
<td>0.05 ppm</td>
<td>(heavy work)</td>
</tr>
</tbody>
</table>

Personal protective equipment

Eye / face protection
Wear safety glasses with side shields.

Skin protection
Wear impervious gloves to avoid repeated or prolonged skin contact with residual oils and to avoid any skin injury.

Respiratory protection
Dust and fumes from processing: Use NIOSH-approved respiratory protection as specified by an Industrial Hygienist or other qualified professional if concentrations exceed the limits listed in Section 8. Suggested respiratory protection: P95.

General
Personnel who handle and work with molten metal should utilize primary protective clothing like polycarbonate face shields, fire resistant tapper’s jackets, neck shades (snoods), leggings, spats and similar equipment to prevent burn injuries. In addition to primary protection, secondary or day-to-day work clothing that is fire resistant and sheds metal splash is recommended for use with molten metal. Synthetic materials should never be worn even as secondary clothing (undergarments).

Minimize breathing oil vapors and mist. Remove oil contaminated clothing; launder or dry-clean before reuse. Remove oil contaminated shoes and thoroughly clean and dry before reuse. Cleanse skin thoroughly after contact, before breaks and meals, and at the end of the work period. Oil coating is readily removed from skin with waterless hand cleaners followed by a thorough washing with soap and water.

9. Physical & Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Solid</td>
</tr>
<tr>
<td>Appearance</td>
<td>Silver colored</td>
</tr>
<tr>
<td>Boiling point</td>
<td>Not determined</td>
</tr>
<tr>
<td>Melting point</td>
<td>900 - 1200 °F (482.2 - 648.9 °C)</td>
</tr>
<tr>
<td>Flash point</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Flammability limits in air, lower, % by volume</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Flammability limits in air, upper, % by volume</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor density</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Solubility (water)</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Density</td>
<td>2.68 - 2.85 g/cm³ (0.097 - 0.103 lb/in³)</td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Odor</td>
<td>Odorless</td>
</tr>
<tr>
<td>Partition coefficient (n-octanol/water)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

10. Chemical Stability & Reactivity Information

Chemical stability
Stable under normal conditions of use, storage, and transportation as shipped.
Conditions to avoid

Chips, fines, dust and molten metal are considerably more reactive with the following:
- **Water**: Slowly generates flammable/explosive hydrogen gas and heat. Generation rate is greatly increased with smaller particles (e.g., fines and dusts). Molten metal can react violently/explosively with water or moisture, particularly when the water is entrapped.
- **Heat**: Oxidizes at a rate dependent upon temperature and particle size.
- **Strong oxidizers**: Violent reaction with considerable heat generation. Can react explosively with nitrates (e.g., ammonium nitrate and fertilizers containing nitrogen) when heated or molten.
- **Acids and alkalis**: Reacts to generate flammable/explosive hydrogen gas. Generation rate is greatly increased with smaller particles (e.g., fines and dusts).
- **Halogenated compounds**: Many halogenated hydrocarbons, including halogenated fire extinguishing agents, can react violently with finely divided or molten aluminum.
- **Iron oxide (rust) and other metal oxides** (e.g., copper and lead oxides): A violent thermite reaction generating considerable heat can occur. Reaction with aluminum fines and dusts requires only very weak ignition sources for initiation. Molten aluminum can react violently with iron oxide without external ignition source.
- **Iron powder and water**: Explosive reaction forming hydrogen gas when heated above 1470°F (800°C).

Hazardous polymerization

Will not occur.

11. Toxicological Information

Health effects associated with ingredients

Aluminum dust/fines and fumes: Low health risk by inhalation. Generally considered to be biologically inert (milling, cutting, grinding).

Copper dust/mists: Can cause irritation of the eyes, mucous membranes, skin, and respiratory tract. Chronic overexposures: Can cause reduction in the number of red blood cells (anemia), skin abnormalities (pigmentation changes) and hair discoloration.

Nickel dust and fume: Can cause irritation of eyes, skin and respiratory tract. Eye contact: Can cause inflammation of the eyes and eyelids (conjunctivitis). Skin contact: Can cause sensitization and allergic contact dermatitis. Chronic overexposures: Can cause perforation of the nasal septum, inflammation of the nasal passages (sinusitis), respiratory sensitization, asthma and scarring of the lungs (pulmonary fibrosis). Nickel alloys IARC/NTP: Reviewed and not recommended for listing by NTP. Listed as possibly carcinogenic to humans by IARC (Group 2B).

Silicon (inert dusts): Chronic overexposures: Can cause chronic bronchitis and narrowing of airways.

Manganese dust or fumes: Chronic overexposures: Can cause inflammation of the lung tissues, scarring of the lungs (pulmonary fibrosis), central nervous system damage, Secondary Parkinson’s Disease and reproductive harm in males.

Silver: Can cause irritation of eyes, mucous membranes and skin. Chronic overexposures: Can cause irreversible blue-gray discoloration of mucous membranes, eyes and skin (argyria).

Chromium dust and fumes: Can cause irritation of eye, skin and respiratory tract.

Metallic chromium and trivalent chromium: Not classifiable as to their carcinogenicity to humans by IARC.

Cadmium dust, fumes and mist: Can cause severe irritation of respiratory tract. Acute overexposures: Can cause metal fume fever (shortness of breath and malaise), inflammation of the lung tissue and fluid in the lungs (pulmonary edema). Effects can be delayed for several hours. Chronic overexposures: Can cause lung damage, renal tube damage, placenta damage, testicular damage, liver damage, fetal malformations, reduction in the number of red blood cells (anemia), high blood pressure (hypertension), emphysema and central nervous system effects. Can accumulate in the body over time. IARC/NTP: Listed as "known to be a human carcinogen" by the NTP. Listed as carcinogenic to humans by IARC (Group 1). Cadmium and cadmium compounds: Associated with lung tumors, prostate tumors, kidney tumors and testicular tumors.

Some products are supplied with an oil coating or have residual oil from the manufacturing process.

Oil: Can cause irritation of skin. Skin contact (prolonged or repeated): Can cause dermatitis.
Health effects associated with compounds formed during processing

Alumina (aluminum oxide): Low health risk by inhalation. Generally considered to be biologically inert.

Copper fume: Can cause irritation of the eyes, mucous membranes, and respiratory tract. Acute overexposures: Can cause metal fume fever (nausea, fever, chills, shortness of breath and malaise).

Nickel compounds: Can cause irritation of eyes, skin and respiratory tract. Skin contact: Can cause sensitization and allergic contact dermatitis. Chronic overexposures: Can cause perforation of the nasal septum, inflammation of the nasal passages (sinusitis), respiratory sensitization and asthma. Associated with lung cancer, cancer of the vocal cords and nasal cancer. IARC/NTP: Listed as "known to be a human carcinogen" by the NTP. Listed as carcinogenic to humans by IARC (Group 1).

Magnesium oxide fumes: Can cause irritation of the eyes and respiratory tract. Acute overexposures: Can cause metal fume fever (nausea, fever, chills, shortness of breath and malaise).

Iron oxide: Chronic overexposures: Can cause benign lung disease (siderosis). Ingestion: Can cause irritation of gastrointestinal tract, bleeding, changes in the pH of the body fluids (metabolic acidosis) and liver damage.

Silica, amorphous: Acute overexposures: Can cause dryness of eyes, nose and upper respiratory tract.

Manganese oxide fumes: Can cause irritation of the eyes, skin, and respiratory tract. Acute overexposures: Can cause metal fume fever (nausea, fever, chills, shortness of breath and malaise).

Hexavalent chromium compounds (chromium VI): Can cause irritation of eye, skin and respiratory tract. Skin contact: Can cause irritant dermatitis, allergic reactions and skin ulcers. Chronic overexposures: Can cause perforation of the nasal septum, respiratory sensitization, asthma, the accumulation of fluid in the lungs (pulmonary edema), lung damage, kidney damage, lung cancer, nasal cancer and cancer of the gastrointestinal tract. IARC/NTP: Listed as “known to be a human carcinogen” by the NTP. Listed as carcinogenic to humans by IARC (Group 1).

Magnesium oxide fumes: Can cause irritation of the eyes and respiratory tract. Acute overexposures: Can cause metal fume fever (nausea, fever, chills, shortness of breath and malaise).

If the product is heated well above ambient temperatures or machined, oil vapor or mist may be generated.

Oil vapor or mist: Can cause irritation of respiratory tract. Acute overexposures: Can cause bronchitis, headache, central nervous system effects (nausea, dizziness and loss of coordination) and drowsiness (narcosis).

Welding, plasma arc cutting, and arc spray metalizing can generate ozone.

Ozone: Can cause irritation of eyes, nose and upper respiratory tract. Acute overexposures: Can cause shortness of breath, tightness of chest, headache, cough, nausea and narrowing of airways. Effects are reversible on cessation of exposure. Acute overexposures (high concentrations): Can cause respiratory distress, respiratory tract damage, bleeding and the accumulation of fluid in the lungs (pulmonary edema). Effects can be delayed up to 1-2 hours. Additional information: Studies (inhalation) with experimental animals have found genetic damage, reproductive harm, blood cell damage, lung damage and death.

Welding fumes: IARC/NTP: Listed as possibly carcinogenic to humans by IARC (Group 2B). Additional information: In one study, occupational asthma was associated with exposures to fumes from aluminum welding.

Plasma arc cutting of aluminum can generate oxides of nitrogen.

Oxides of nitrogen (NO and NO2): Can cause irritation of eyes, skin and respiratory tract. Acute overexposures: Can cause reduced ability of the blood to carry oxygen (methemoglobin). Can cause cough, shortness of breath, accumulation of fluid in the lungs (pulmonary edema) and death. Effects can be delayed up to 2-3 weeks. Nitrogen dioxide (NO2): Chronic overexposures: Can cause scarring of the lungs (pulmonary fibrosis).

Oxides of nitrogen (NO and NO2): Can cause irritation of eyes, skin and respiratory tract. Acute overexposures: Can cause reduced ability of the blood to carry oxygen (methemoglobin). Can cause cough, shortness of breath, accumulation of fluid in the lungs (pulmonary edema) and death. Effects can be delayed up to 2-3 weeks. Nitrogen dioxide (NO2): Chronic overexposures: Can cause scarring of the lungs (pulmonary fibrosis).

Component analysis - LD50

No information available for product.

Components

Toxicology Data - Selected LD50s and LC50s

<table>
<thead>
<tr>
<th>Component</th>
<th>LD50/Rat</th>
<th>LC50/Rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium‡</td>
<td>Oral: 2330 mg/kg</td>
<td>Oral: 8 mg/L/4H</td>
</tr>
<tr>
<td>Iron</td>
<td>Oral: 984 mg/kg</td>
<td>Oral: 230 mg/kg</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Oral: 9 g/kg</td>
<td>Oral: 9 g/kg</td>
</tr>
<tr>
<td>Nickel†</td>
<td>Oral: >9000 mg/kg</td>
<td>Oral: 3160 mg/kg</td>
</tr>
<tr>
<td>Silicon</td>
<td>Oral: >2000 mg/kg</td>
<td>Oral: >2000 mg/kg</td>
</tr>
</tbody>
</table>

Material name: WROUGHT ALUMINUM PRODUCTS, 2xxx SERIES ALLOYS

0664 Version #: 05 Revision date: 11-24-2009 Print date: 11-24-2009
Compounds Formed During Processing

Toxicology Data - Selected LD50s and LC50s

- **Aluminum oxide (non-fibrous) (1344-28-1)**
 - Oral LD50 Rat: >5000 mg/kg
- **Iron oxide (1309-37-1)**
 - Oral LD50 Rat: >10000 mg/kg
- **Nitric oxide (10102-43-9)**
 - Inhalation LC50 Rat: 1068 mg/m3/4H
- **Nitrogen dioxide (10102-44-0)**
 - Inhalation LC50 Rat: 88 ppm/4H; Inhalation LC50 Rat:165 mg/m3/4H; Inhalation LC50 Rat:220 mg/m3/1H
- **Oil mist, mineral (8012-95-1)**
 - Oral LD50 Mouse: 22 g/kg
- **Ozone (10028-15-6)**
 - Inhalation LC50 Rat: 4800 ppb/4H

Carcinogenicity

No information available for product.

Components

ACGIH - Threshold Limit Values - Carcinogens

- **Aluminum (7429-90-5)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Cadmium‡ (7440-43-9)**
 - A2 - Suspected Human Carcinogen
- **Chromium (7440-47-3)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Nickel† (7440-02-0)**
 - A5 - Not Suspected as a Human Carcinogen

IARC - Group 1 (Carcinogenic to Humans)

- **Cadmium‡ (7440-43-9)**
 - Monograph 58 [1993], Supplement 7 [1987]

IARC - Group 2B (Possibly Carcinogenic to Humans)

- **Nickel† (7440-02-0)**
 - Monograph 49 [1990], Supplement 7 [1987]

NTP (National Toxicology Program) - Report on Carcinogens - Known Human Carcinogens

- **Cadmium‡ (7440-43-9)**
 - Known Human Carcinogen

U.S. - OSHA - Specifically Regulated Carcinogens (1910.1001 to 1910.1096)

- **Cadmium‡ (7440-43-9)**
 - Carcinogen - dust can cause lung and kidney disease. See 29 CFR 1910.1027

Compounds Formed During Processing

ACGIH - Threshold Limit Values - Carcinogens

- **Aluminum oxide (non-fibrous) (1344-28-1)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Chromium (III) compounds (CASNo. Not available)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Chromium (VI) compounds, certain water insoluble forms (CASNo. Not available)**
 - A1 - Confirmed Human Carcinogen
- **Chromium (VI) compounds, water soluble forms (CASNo. Not available)**
 - A1 - Confirmed Human Carcinogen
- **Iron oxide (1309-37-1)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Magnesium oxide (1309-48-4)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Nickel compounds, insoluble (CASNo. Not available)**
 - A1 - Confirmed Human Carcinogen
- **Nitrogen dioxide (10102-44-0)**
 - A4 - Not Classifiable as a Human Carcinogen
- **Ozone (10028-15-6)**
 - A4 - Not Classifiable as a Human Carcinogen

IARC - Group 1 (Carcinogenic to Humans)

- **Chromium (VI) compounds (CASNo. Not available)**
 - Monograph 49 [1990] (evaluated as a group)
- **Nickel compounds, insoluble (CASNo. Not available)**
 - Monograph 49 [1990] (evaluated as a group)

NTP (National Toxicology Program) - Report on Carcinogens - Known Human Carcinogens

- **Chromium (VI) compounds (CASNo. Not available)**
 - Known Human Carcinogen
- **Nickel compounds, insoluble (CASNo. Not available)**
 - Known Human Carcinogen

U.S. - OSHA - Specifically Regulated Carcinogens (1910.1001 to 1910.1096)

- **Chromium (VI) compounds (CASNo. Not available)**
 - Workers exposed to Cr(VI) are at an increased risk of developing lung cancer - see 29 CFR 1910.1026

12. Ecological Information

Ecotoxicity

Components

Ecotoxicity - Freshwater Algae Data

- **Copper (7440-50-8)**
 - 72 Hr EC50 Scenedesmus subspicatus: 120 µg/L
- **Nickel† (7440-02-0)**
 - 72 Hr EC50 freshwater algae (4 species): 0.1 mg/L; 72 Hr EC50 Selenastrum capricornutum: 0.18 mg/L
Ecotoxicity

Components

Ecotoxicity - Freshwater Fish Species Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Species</th>
<th>96 Hr LC50</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium‡ (7440-43-9)</td>
<td>Oncorhynchus mykiss: 0.003 mg/L [flow-through]; 96 Hr LC50 Cyprinus carpio: 0.002 mg/L; 96 Hr LC50 Cyprinus carpio: 4.26 mg/L [static]; 96 Hr LC50 Cyprinus carpio: 0.24 mg/L [static]; 96 Hr LC50 Lepomis macrochirus: 21.1 mg/L [flow-through]; 96 Hr LC50 Oryzias latipes: 0.016 mg/L; 96 Hr LC50 Pimephales promelas: 0.0004-0.003 mg/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (7440-50-8)</td>
<td>96 Hr LC50 Pimephales promelas: 0.0068-0.0156 mg/L; 96 Hr LC50 Pimephales promelas: <0.3 mg/L [static]; 96 Hr LC50 Pimephales promelas: 0.052 mg/L [flow-through]; 96 Hr LC50 Cyprinus carpio: 0.3 mg/L [semi-static]; 96 Hr LC50 Cyprinus carpio: 0.8 mg/L [static]; 96 Hr LC50 Poecilia reticulata: 0.112 mg/L [flow-through]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (7439-89-6)</td>
<td>96 Hr LC50 Morone saxatilis: 13.6 mg/L [static]; 96 Hr LC50 Cyprinus carpio: 0.56 mg/L [semi-static]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel† (7440-02-0)</td>
<td>96 Hr LC50 Brachydanio rerio: >100 mg/L; 96 Hr LC50 Cyprinus carpio: 1.3 mg/L [semi-static]; 96 Hr LC50 Cyprinus carpio: 10.4 mg/L [static]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver (7440-22-4)</td>
<td>96 Hr LC50 Pimephales promelas: 0.00155-0.00293 mg/L [static]; 96 Hr LC50 Oncorhynchus mykiss: 0.0062 mg/L [flow-through]; 96 Hr LC50 Lepomis macrochirus: 0.064 mg/L [static]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ecotoxicity - Water Flea Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>96 Hr EC50 water flea: 9.9 μg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium‡ (7440-43-9)</td>
<td>96 Hr EC50 water flea: 10 μg/L; 96 Hr EC50 water flea: 200 μg/L</td>
</tr>
<tr>
<td>Copper (7440-50-8)</td>
<td>96 Hr EC50 water flea: 510 μg/L</td>
</tr>
<tr>
<td>Nickel† (7440-02-0)</td>
<td>48 Hr EC50 Daphnia magna: 0.9 μg/L; 96 Hr LC50 Daphnia magna: 5 μg/L; 96 Hr LC50 Hyalella azteca: 1.4-2.3 μg/L</td>
</tr>
</tbody>
</table>

Compounds Formed During Processing

<table>
<thead>
<tr>
<th>Compound</th>
<th>24 Hr EC50 water flea: 435 μg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (VI) compounds (CASNo. Not available)</td>
<td>96 Hr LC50 Pimephales promelas: 36.2 mg/L; 96 Hr LC50 Oncorhynchus mykiss: 7.6 mg/L</td>
</tr>
</tbody>
</table>

Environmental Fate

No data available for product.

13. Disposal Considerations

Disposal instructions

Reuse or recycle material whenever possible. If reuse or recycling is not possible, disposal must be made according to local or governmental regulations.

Waste codes

RCRA Status: Must be determined at the point of waste generation. If material is disposed as a waste, it must be characterized under RCRA according to 40 CFR, Part 261, or state equivalent in the U.S.

14. Transport Information

General Shipping Information

- **Basic shipping description:**
 - UN number: -
 - Proper shipping name: Not regulated
 - Hazard class: -
 - Packing group: -

General Shipping Notes

- When "Not regulated", enter the proper freight classification, MSDS Number and Product Name onto the shipping paperwork.

15. Regulatory Information

US federal regulations

In reference to Title VI of the Clean Air Act of 1990, this material does not contain nor was it manufactured using ozone-depleting chemicals.

All electrical equipment must be suitable for use in hazardous atmospheres involving aluminum powder in accordance with 29 CFR 1910.307. The National Electrical Code, NFPA 70, contains guidelines for determining the type and design of equipment and installation which will meet this requirement.
Components

U.S. - CERCLA/ SARA - Hazardous Substances and their Reportable Quantities

Cadmium‡ (7440-43-9) 10 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 4,54 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

Chromium (7440-47-3) 5000 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 2270 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

Copper (7440-50-8) 5000 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 2270 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

Nickel† (7440-02-0) 100 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers); 45.4 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers)

Silver (7440-22-4) 1000 lb final RQ (no reporting of releases of this hazardous substance is required if the diameter of the solid metal released is larger than 100 micrometers); 454 kg final RQ (no reporting of releases of this hazardous substance is required if the diameter of the solid metal released is larger than 100 micrometers)

U.S. - CERCLA/ SARA - Section 313 - Emission Reporting

Aluminum (7429-90-5) 1.0 % de minimis concentration (dust or fume only)

Cadmium‡ (7440-43-9) 0.1 % de minimis concentration

Chromium (7440-47-3) 1.0 % de minimis concentration

Copper (7440-50-8) 1.0 % de minimis concentration

Manganese (7439-96-5) 1.0 % de minimis concentration

Nickel† (7440-02-0) 0.1 % de minimis concentration

Silver (7440-22-4) 1.0 % de minimis concentration

State regulations

Components

U.S. - California - 8 CCR Section 339 - Director's List of Hazardous Substances

Aluminum (7429-90-5) Present

Cadmium‡ (7440-43-9) Present

Chromium (7440-47-3) Present

Copper (7440-50-8) Present

Iron (7439-89-6) Present

Magnesium (7439-95-4) Present

Manganese (7439-96-5) Present

Nickel† (7440-02-0) Present

Silver (7440-22-4) Present

U.S. - California - Proposition 65 - Carcinogens List

Cadmium‡ (7440-43-9) carcinogen, initial date 10/1/87

Nickel† (7440-02-0) carcinogen, initial date 10/1/89

U.S. - California - Proposition 65 - Developmental Toxicity

Cadmium‡ (7440-43-9) developmental toxicity, initial date 5/1/97

U.S. - California - Proposition 65 - Reproductive Toxicity - Male

Cadmium‡ (7440-43-9) male reproductive toxicity, initial date 5/1/97

U.S. - Massachusetts - Right To Know List

Aluminum (7429-90-5) Present

Cadmium‡ (7440-43-9) Carcinogen; Extraordinarily hazardous

Chromium (7440-47-3) Carcinogen; Extraordinarily hazardous

Copper (7440-50-8) Present

Magnesium (7439-95-4) Present

Manganese (7439-96-5) Present

Nickel† (7440-02-0) Carcinogen; Extraordinarily hazardous

Silicon (7440-21-3) Present (dust, exempt when encapsulated or if particulates are not present and cannot be substantially generated through use of the product)

Silver (7440-22-4) Present

U.S. - Minnesota - Hazardous Substance List

Aluminum (7429-90-5) Present (dust)
State regulations

Components

U.S. - Minnesota - Hazardous Substance List
- Cadmium‡ (7440-43-9) Carcinogen (dust and fume)
- Chromium (7440-47-3) Present
- Copper (7440-50-8) Present (dust, fume, and mist)
- Manganese (7439-96-5) Present
- Nickel† (7440-02-0) Carcinogen
- Silicon (7440-21-3) Present (dust)
- Silver (7440-22-4) Present

U.S. - New Jersey - Right to Know Hazardous Substance List
- Aluminum (7429-90-5) sn 0054
- Cadmium‡ (7440-43-9) sn 0305
- Chromium (7440-47-3) sn 0432
- Copper (7440-50-8) sn 0528
- Magnesium (7439-95-4) sn 1136
- Manganese (7439-96-5) sn 1155 (dust and fume)
- Nickel† (7440-02-0) sn 1341 (dust and fume)
- Silicon (7440-21-3) sn 3125 (powder)
- Silver (7440-22-4) sn 1669

U.S. - Pennsylvania - RTK (Right to Know) - Special Hazardous Substances
- Cadmium‡ (7440-43-9) Present (including powder)
- Chromium (7440-47-3) Present
- Nickel† (7440-02-0) Present

U.S. - Pennsylvania - RTK (Right to Know) List
- Aluminum (7429-90-5) Environmental hazard
- Cadmium‡ (7440-43-9) Environmental hazard; Special hazardous substance
- Chromium (7440-47-3) Environmental hazard; Special hazardous substance
- Copper (7440-50-8) Environmental hazard
- Magnesium (7439-95-4) Present
- Manganese (7439-96-5) Environmental hazard
- Nickel† (7440-02-0) Environmental hazard; Special hazardous substance
- Silicon (7440-21-3) Present
- Silver (7440-22-4) Environmental hazard

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories
- Immediate Hazard - Yes, If particulates/fumes generated during processing
- Delayed Hazard - Yes, If particulates/fumes generated during processing
- Fire Hazard - No
- Pressure Hazard - No
- Reactivity Hazard - Yes, If molten

Inventory status

<table>
<thead>
<tr>
<th>Country(s) or region</th>
<th>Inventory name</th>
<th>On inventory (yes/ no)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Australian Inventory of Chemical Substances (AICS)</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada</td>
<td>Domestic Substances List (DSL)</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada</td>
<td>Non-Domestic Substances List (NDLS)</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Inventory of Existing Chemical Substances in China (IECSC)</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe</td>
<td>European Inventory of New and Existing Chemicals (EINECS)</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe</td>
<td>European List of Notified Chemical Substances (ELINCS)</td>
<td>No</td>
</tr>
<tr>
<td>Japan</td>
<td>Inventory of Existing and New Chemical Substances (ENCS)</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Existing Chemicals List (ECL)</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>New Zealand Inventory</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>Philippine Inventory of Chemicals and Chemical Substances (PICCS)</td>
<td>Yes</td>
</tr>
<tr>
<td>United States & Puerto Rico</td>
<td>Toxic Substances Control Act (TSCA) Inventory</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

Inventory information

Japan - ENCS Inventory: Pure metals are not specifically listed by CAS or ENCS number. The class of compounds for each of these metals is listed on the ENCS inventory.
16. Other Information

MSDS History
Origination date: March 16, 1990
Supersedes: October 20, 2006
Revision date: November 24, 2009

MSDS Status
November 24, 2009: New format.
October 20, 2006: Reviewed on a periodic basis in accordance with Alcoa policy. Change(s) in Section: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 and 15.
August 14, 2003: Reviewed on a periodic basis in accordance with Alcoa policy. Change(s) in Section: 1, 2, 3, 8 and 15

Prepared By
Hazardous Materials Control Committee
Preparer: Jon N. Peace, 412-553-2293/Robert W. Barr, 412-553-2618

MSDS System Number
115950

Other information
- Guide to Occupational Exposure Values 2009, Compiled by the American Conference of Governmental Industrial Hygienists (ACGIH).
- Documentation of the Threshold Limit Values and Biological Exposure Indices, Sixth Edition, 1991, Compiled by the American Conference of Governmental Industrial Hygienists, Inc. (ACGIH).
- NFPA 65, Standard for Processing and Finishing of Aluminum (NFPA phone: 800-344-3555)
- NFPA 651, Standard for Manufacture of Aluminum and Magnesium Powder
- NFPA 70, Standard for National Electrical Code (Electrical Equipment, Grounding and Bonding)
- NFPA 77, Standard for Static Electricity
Material name: WROUGHT ALUMINUM PRODUCTS, 2xxx SERIES ALLOYS

0664 Version #: 05 Revision date: 11-24-2009 Print date: 11-24-2009

Disclaimer
The information in the sheet was written based on the best knowledge and experience currently available.
WROUGHT ALUMINUM PRODUCTS, 2xxx SERIES ALLOYS

WARNING
Non-combustible as supplied. Small chips, fine turnings and dust from processing may be readily ignitable.

Explosion/fire hazards may be present when:

Dust or fines are dispersed in air; Chips, fines or dust are in contact with water; Dust and fines are in contact with certain metal oxides (e.g., rust, copper oxide). Molten metal in contact with water/moisture or certain metal oxides (e.g., rust, copper oxide).

Dust and fumes from processing: Can cause irritation of the eyes, skin and respiratory tract. Prolonged or repeated skin contact may cause sensitization and allergic contact dermatitis.

Health effects from mechanical processing (e.g., cutting, grinding): Chronic overexposures: Can cause skin abnormalities, reduction in the number of red blood cells, respiratory sensitization, central nervous system damage, secondary Parkinson's disease and reproductive harm in males.

Additional health effects from elevated temperature processing (e.g., welding, melting): Acute overexposures: Can cause metal fume fever, reduced ability of the blood to carry oxygen and the accumulation of fluid in the lungs. Chronic overexposures: Can cause benign lung disease and lung cancer.

FIRST AID

Eye contact
Dust and fumes from processing: Rinse eyes with plenty of water or saline for at least 15 minutes. Consult a physician.

Skin contact
Dust and fumes from processing: Wash with soap and water for at least 15 minutes. Get medical attention if irritation develops or persists.

Inhalation
Dust and fumes from processing: Remove to fresh air. Check for clear airway, breathing, and presence of pulse. Provide cardiopulmonary resuscitation for persons without pulse or respirations. Consult a physician.

FIRE FIGHTING

Suitable extinguishing media
Use Class D extinguishing agents on fines, dust or molten metal. Use coarse water spray on chips and turnings.

Extinguishing media which must not be used for safety reasons
DO NOT USE halogenated extinguishing agents on small chips/fines. DO NOT USE water in fighting fires around molten metal. These fire extinguishing agents will react with the burning material.

SPILL PROCEDURES

Spill or leak procedure
Collect scrap for recycling.

If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remelting as scrap.

HANDLING AND STORAGE

Handling
Keep material dry. Avoid generating dust. Avoid contact with sharp edges or heated metal. Hot and cold aluminum are not visually different. Hot aluminum does not necessarily glow red.

Contains:

- Aluminum 7429-90-5
- Copper 7440-50-8
- Nickel† 7440-02-0
- Magnesium 7439-95-4
- Iron 7439-89-6
- Silicon 7440-21-3
- Manganese 7439-96-5
- Silver 7440-22-4
- Chromium 7440-47-3
- Cadmium‡ 7440-43-9

See Alcoa Material Safety Data Sheet No. 664 for more information about use and disposal.
Emergencv Phone: (412) 553-4001.